Simple Question from a New User

mberry28mberry28 Global Mapper UserPosts: 2
edited May 2015 in Technical Support
Hi All-

I am pretty familiar with Generic Mapping Tools, but there is some things that I am struggling with in global mapper, I am sure it's simple- so if anyone can point me in the right direction, that would be great.

I am trying to import a txt file with lat, long, and 3rd column with a value between 0 and 1. I want to have the dots from the file be a certain color based on the 3rd column (i.e. 0.0 to 0.12 is light blue, 0.121 to 0.25 dark blue...)

Like I said, I am sure it's a breeze but I haven't figured out how it works.

Thanks so much!

Comments

  • yianniyianni Global Mapper User Posts: 101Trusted User
    edited May 2015
    Hi

    I would add the coordinates on GM as any other txt file with XY info and chose the 3rd column to be the name of the point.

    Then with the search vector data button (binoculars) I would sort them out according to the range that you want to edit, select all and then edit.

    I am not sure if you can choose for the name to be hidden and assign it as an attribute but you can very easily delete all the names of the points after you finish.

    I do not know how many points you have, it might not be as easy though.

    There might be some clever scripting that can be done as well to that effect and/or use the LiDAR module.

    y
  • Amanda McDermottAmanda McDermott Global Mapper User Posts: 72Trusted User
    edited May 2015
    Hello,

    Under the 'Options' button (in Overlay Control Centre, when you have the overlay you want to apply to selected) you can go to the 'point styles' tab (or area styles for areas) and choose 'Apply styling based on Attribute/Name Values'.

    Usefully, if you want to use the same styles for future data sets, you can save out the style once you have what you want, and next time 'load from file'.

    [IMG]http://www.globalmapperforum.com/forums/image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAVwAAAG8CAIAAAAdMIr5AAAgAElEQVR4nO2da3ccxbnv 0PoE2itbc5eh7zYmMzaL07yRpAEEyBsrYiQ7ODhpr2dE0ycAAm52ECUjME2mAQHbMXxYINjMw4gLkmwLNtgEfkCA5bvN4QtWXJ8oy0Z22STo/OiZrrrqVtXX2amp f/W7Xsnp6q53mquurf1a3paqf3L3uQkJCQvOSs/OteJCQkJC85f3hrLxISEpKXnFUb9yMhISF5yXm /wASUuukp18a/P4jy797/8Jk0/cfWf70S4OrNx1YvSnhgItrN333Szd1tLUnm777pZuKazcpPYqi8GjPQsv0m1WvFjfua/gxRkIKle59aOlb2z4cOTWZbHpr24f3PrS0FqJwy4wvblzRe3HPe8mmjSt6b5nxRaVHZ/Wmg3wa2rFLmXbsfG/ne /v2PX 9p3vsT2P9izsfeMDoTgSUsrT7B88PnJqctveiWTTyKnJ2T94fM3AwTUDCQfc0dY tXvn39f/Ptk0tXtnR1u70qPzwuZDfLr02f9Ypkd7Fv7 jbJQHAkp5Sk/74mPJibf3jPBp2k7hFJ8 mhiMj/viRe3HHpxS8IBd7S1T5a3T6xdfuqPy0/9cfmptZXE9kywjer2KZJWVEqtXeEXrG5Mlrd3tLUrPTovbjnMp88//3zTwO5vzi/d9tj62wvrvrPkxTt u3pifPyzK5e99H V/zsyuVHexaufPMDvuxDX3f 5f/2 3sW3uZ8/feC/eTTwtucKsS7Ob3ws39x/u27L9Q4NqT0pTsrojDOp np6c6ubnOanp4WSvHpo4nJO c9sXbr4bVbEw64o63d3TU4vnqZn9YsG19T2X72pz/3Inz2pz9X7pHTydXL3F2DHW3tSo/OH7ce5dM/P/9808DuucvemLfi9R tevXBF17 yfqSThT 8OfdpPjj33K vtL7 OOvOx2PHxXsa9LKDueaO160zEw9 gUH7vjfzozvDyTvBSlD6c4fLjo2MbllzwSfPv/8886ubu/jG0OHNwx8 Nwf31q4bO33H wR1GHJipJQfMueiWMTk3f cNG6rUfXJR1wR1v7J9vfHvvD0rGVS8dWLh2tbrDE1IrR2dX9ux8/LOwZXbl0lMs/9oelzNQn29/uaGtXenTWvX2MT5MXL20a2L3gxbduWdg764nf3LT0qVt/t4iJwpUrl69cvvTZlcu3PruIicKqvwyT4mt/McO5/SeVjyuv87cD08rrnGtmr7XM7KXNs692rntCF0BSXpAyle760eJjE5Ob90zw6fLly51d3d7H0sCHu0fOLXu 77R7iR9j3kgTim/eM3FsYvKuHy1e//ax9UkH3NHWfm5w4MRzi44vX3R8 aLjzy2ubiw6vnzRsgd/3NnV/c8qwvayB398Yvmi48sXsX PL190fPlitn1ucKCjrV3p0Vm/7Rifpi5e2jSw 2u/fubGJU/f8tsn/ O5J775h19PjI9fuXLFmynM fNcJgrFt4Zp8c2zr3auW3Rs/bZj6xfd7ty8srJ/3S9mVCb4tz/M5WRct2jldd4FACvi569a27byOuea626 hrPAsnEfK2avmb2ukn/2ooqdGXM3r98meFl5ncNyat3Nnnu74xcXYj4mtBtSs6S7frT46MTklj2n HThwoXOrm7v44aB3cMj53/3/Gun3ctKURCKb9lz6ujE1F0/WvzStmMvJR0wE4WRZYWRZwojywofLyuMLPM3Pn6m8MwDD3Z2df D0tnV/cwDD1ayPeOXGqmWYqKg9OiUBkf4NPXp5U0Du296auk3li3uXPH4bcWeb7/4yMT4 D8 u8JfQTBRWL1xr1D8t3OvmTF3a2lw5Kc3O9cvZjtXXe9ck183UhocKS2 fcbcraXBrfmrHZatmrg8g6uud6pl182fUdm/6npHKDJSWjd/xtXzf0sC2Jq/mpVddb3jOOxbYoT34ltWunNuXsVidpzbf8o22B6kZk53P7Bk 76x5/re49OZM2c6u7q9j4uKb732zt4fPvZs/7YPOru62bcsCTm9tH3f2N0PLNkwOLIh6YA72toPrXjyrx1XG9JjN93Y2dX99yqdXd2P3XSjucihFU92tLUrPTob3v2YT0wUbn120Td/X/jW6l/ 59r5 dLDE Pjn12 JIvCmv59QvEN6 dfdfX837779p1XX3Pn uoeh PmVRvWz7/K fbPSMFV1zt8fv/bn93sXL EZuB9iXY8vyS/ykh1O9gdn9O56v63xSojNVW6 4ElO/aPrXj9fT6dPHmys6vb 7h49cYNAx8 8Mtn 94a7OzqPnDggCcKbFsovuL193fsP3n3A0v 9O7Hf0o6YCYK/TfM3DhrZv syr/9s2b2z7q2/4Zr 2fN/OWtN3d2dZ gdHZ1//LWm/tvuLb/hpkbb5i58YaZ/bOu7Z91bf8NM1lioqD06Lw8dJxPTBS6Vv3q2y88 t11P7/zTz 5p BifHxXVWuXL584YLrfnL 0Z6FLw7sF4q/PPT2XV YedeTC676woJlbM9LC65yvv1zPo 8Z6j4FWfmXS8pvv35N5yvPEkzEF/sW9kyn9/Lxu sbge7I66X/WCm41CnSE2V7nlwyc4DJ1e QGfRkZGOru6vY9PvbDp5c27H33y cFde5kQ8PA5vbTzwPg9Dy55Zej4K0kH3NHWfnjl01s6vyylL23p/PKvvtnZ2dV9tIqw/atvdqoKfnlL55cPr3y6o61d6dF5dfsJPn166crqNS9vGtjNJ14UPr148fz58 fPnXu0Z EfN 8Xir 6/cSz82Y6jnPVvHeqe57/Cvl44tXt79z9BWHP819xZt69wc//ladOvLr9xKsbHrnK c58MQOXnvqOU8kgOOK21Ua87UB3outn582kwSM1U7r3oSfLR0 /sPkgnw4fPtzZ1e197H39vWWlbb967uWHH195z/2PCH99 MWS1ULxFzYfLB89fe9DT/ZtP9GXdMAdbe3H1jw3eMesbXfcuO2OGwdnzxq8w0 8ZnV2dRe fbuwZ9ArMnvW4OxZg3fcyAoeW/NcR1u70qPTt2OMT59MXp7 52fT0//4/LNPp/95ZXr6n9PT//h//3PpyuVLly9dmpqadC 4Fy64U5MXHu1ZuG7LQaF4346xvj898r cmff8SdhT5dY1fTvG nas Wp1x1eXjvXtGFtwK/etn9 zs argk0vLf2OQ015 b9660xhP eFMxjgrrrtO/rOAjkMpCZJ3Q89Nfzx Q3vjvCJv0DQpQMHDgil DT88fnuh556bcfYa0kH3NHW/nGpuON7t 343req6bbqx9uemD3bi/CJ2bN3fO9b0p7buCK37ZhTsfNxqdjR1q706Ly26ySfHnmsoHzS4dePLy488dRj3J4lz6196Z0jQvHUpDVfdWbe80rDw0BKXfqvnyzdP3pB2HnADoPZ/aMX/usnS1/fdfL1pAPuaGsfe6NUfvCehNK9bGPsjVJHW7vSo/P6e N8emXo EvvHLZJpW1HX9s5JhRPTXrha861977S8DCQUpf GnD45P/eXDvyebDo5P/ffDT7/x3vgbSQfc0dZ auDN4QX3D8 /f8 C /fMv3/YSwvmDi 4f3jB/cPz5 6pbM8dXjB3eH51e34leaW8jVMDb3a0tSs9Om 8P57F9MLXnGvvfbXhYSClLs17rHfzzoOHJi4mmzbvPDjvsd433x9/M mAv/Gv/75pRe/Zv21NNm1a0fuNf/13pUfnzfIEElLrpDUb98x7bMWcn/4m2TTvsRVrNu75c3niz0kH3LvqzVtmfDHx9RRumfHF3lVvKj06f/ngFBISEpKXnL9 HckJCQkLzlv7T6NhISE5CVfFFwAQEsCUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgQBQAAASIAgCAEFEULF hAwBIIcmLwvT09CgAoGmZM2dOkqLAFMGsNACANFMsFg3zBYgCAC1HsVg0TBYgCgC0HBCFhCgXctxbbHKFch18lvKOSL6UqIdyIZcvlQs5c30CM1jlqfoSKlSwMA4SBaKQEDYDI34RNaV80mLgGc4VysFxJiIKOl9xWskrm1hTtwQQhYTIoCiUC7l8ybWIMwFR0PtKRBRAGCAKCaHszfRigp/t xPlXKHMl2Xb5UIul8/nSEb9RYkvCqW8fwVRyju5fL5qh7u0kAx6O4gDdupWVY1WhGUI8lI1EtYXOdsLBj0b1e3gFvaN BpUyPO7NBG2EhCFhCAXw/kS37t1HV05ufW cqTvtOc9bqZQLuQq26V8ZVxwI786gqnBanG/rOufuk1 Wi5EaX0Yu9LuEdSKahoh1LebyNxqqRuYT9jZYuL3NgarQVEISGEkSN2bnqWlE9fipmCcGYznL3I5UPlA/tPsOzId/KqY1p36par5uorYvBS8odlaF9 jFJ7ynphaGFDO7tEOFp5muBCFBJDIQrCecY7sdnNFLQnQRl6T6GUd/KlykBTz0HUBkt5fgbN5REHqr4iBi/UiLUvc9jlQs6TG2NgIURBjrDlgCgkhNibuV5c2eSGLuu9Zb43676S7cgINxpLee9Mpygt7ZIvVfhTt6JqqmhtvCgviwJ8KWb 4qZ/Vtc3o HywebCrcWAKCSEogt5t73E 3nVfSxDdQxV9ufEM5hkR0L864N/xiwXcrmcdN9MG1j1Ul06yfMzd HiQJjb67xUaxTOl8PulQo3arl28MewsYXlyzHdHA03GsOKwsbdpzdCFNIOve/Ysl0bRCVQFDZyCaKQerhLB9eFKIAohBSF4dMbhwNEAWSA2nQ20BwEi8KwnwJEYRorKWQF8xP1INskJgrTuHDIEOyJetCamPsGRKFFYeeKRs9XQGMIXHmJiEL/8Ol iEILYJ5AgmwTuPIS0wGWnP7hM/3DZ5pJFOjfvZP5hRpn02Swme/8QxRamcB7Cv3Dp5kU9A faU5R0PyOVZ0neD/9La2jX4MEogCaEwtROMOJwp4z/XuaVhTCrjugHNXa3 HaFW8SUicKNWrMWkwkm59gUdhzxkvOpqYWBcWjh9zCHmXh0fpqJrEv0h/Wun62Ql5ey0Bwp/xZcRppIVEInEhGiEH5qFvzECgKm/ac8ZLD/msyUaC/huefpyFPxZSlR u1R5QOasUTjdW1DOQHe3PN8cR K4pCggtYNacWeLSAKBhm /zgNz9Xq0R8olG1loH4hE9OvX5Byki/KAirP4lLTvkLI/DaXV3MSmnWP jymld0qThp6seHE3nFp/QQThQG9pwZgCj48DMCfwdZy0A/HUjzE/vpFwXxK2GaJk/QhMs r6wwkSSPTiufs5anfvwxLuUdbokHwyPb4opPKSJQFJgOsOQM7D0zsLfJRcFw WAhCmSMSzMFcS0D5UIApNulrDtUaQJR4Mcz/xi2pwnCBK2kamzDOcNw8gi0LBgxd6309YJgUdh7xkvZEAXNQ/WK4 Svd8DDTVy9U5Ofja5loF4IADcaQyMeR2mRJVeaphmXftLutBKFIMstJQqb957Z3FyiUG9q9gqG tIMoiDcQnDpc OqCVooUTBdPghrQEW6fGhmUWA6wJKzee/ZzXvPQhTUCGsZNDNpFAV zi6v/uS6Lpk/uLqln0Sz5ltO8oxStkz2sMEfZcWn9GAhCme95Gzed3bzPohC9kmdKFhR42la kZvjQgUhS37zm7ed3bLvrNb9p112H8QhczTfKJQ62ma v5SNrERBS85W/ed3QpRaAGaTxRAcgSKAtMBlpyt 89u3Q9RyD4QhVYmWBT2n/WS8/b s29DFFoA1i3qvOAPSBtKaXhr92mmAyxBFFqLeq/4A9KEbr4gisI7B869c AcRAGAzGMQBaYDLEEUAGgVbEVh24Fz2yAKALQABlFgOsCSs 3guW0HIQoAZB TKBw85yVn8OC5QYgCAC2AQRSYDrDkvHvo3LuHIAoAZB DKDAdYMl599D5dw dhygAkHmMonDeS87fDp3/G0QBgBbAIApMB1hyhg6fHzoMUQAg xhEgekASxAFAFoFW1HYfuST7Uc gSgAkHkMosB0gCVnx5FPdkAUAGgBDKLAdIAlZ fRT3YeTV4UihzRLAAAksUgCkwHWHJ2Hftk17EkRYEJwRwOSAMAacAgCkwHWHJ2HXN3HXOTEgVPDoRHuNkeVQlhEb7wa/LR9T8NhUOsvmVeuo/zGPe99cq1SuMQe9FBPqJ8Ka7BdK54Jtaxvi7j9pkYGEXB9ZLz3kfuex8lLAry0g6jo6M1FAW/HfUvbwpl2fQ6qUTfW8/Hm0iHiGeEvnKplHecfCGSQf8tG/TtbLYFazg8FHUM7BZxg0m0z8TAIApMB1hy3v/IfT8hURAUgelikC4kKwr6Zg3V3AZRMK8gHtaj Haq2OetWL1K8/6syAYjlK358sqRHMSMKtk EwODKDAdYMkpj7jlkeRFgV/RP4IoiC9c8mdfgb2WfwG0V8Rbw7/yFjLtDNmXA/ZK0pq8t54aE2cKYng2rcFPiLXvYgt6D6pRBAOjIh/LhVwu5/tVvF6BvIqLy1c1Ib9eweY9rorM9A20gUJf3eaqUyrwPUHrws pPMyJ9ZkYGESB6QBLzgcjFz4YuZAyURDe7M4dtGDRlc7ygad9tSjU7r31Kku6viRMwtWtwUkLfXeK p1IuveghpsZCVHRj0IDynFKgYrHQioSHL86s8qLoY7K2vkZ9C74DUW3Sa7PxMAgCkwHWHI /PjChx8nLwrxLh/KRHHJyJEGj3KmIBcp0QPPGwstCpwrms3uvfU0ePnyQTztB7VGSe7TqsbRKaC2JelOc1RykPII19lXHguzXkeorE0d/W1VdcwulHlk4veZGBhEgekAS0mKghvlRiNtQvqp8mZ3MnICDHDNqntlqPQi08iiEO 99RV3/resgOo9q bWiDxOFGdaw2zFGJUcpJUo6I9FjUTBVEd97RIUhfh9Jga2orD7 IXdx5MUBbZurKAIelGgUwV/oiB0DeH9nxzkGHhfS0WIKAhzWGmPXhTEU7uYzeK99TpzZToP5 0HtIa/x88rOfDzakVBKM7/9SEoqpL0UTFg NoyK5qWVxWxiN Y2VDHkkXt/DmDxoVeFBLuMzEwiALTAZac4eMXhpMTBVbKEwJeIPQluNmSMBkl7xnVTKXoXItrP 3LSEmJ6pfVjzmuN9fqvfXm4A3haVvDz5FTTJj5vEZRELzzd2EDoyIfdWdR6UajZDbee1wNmQ11lDuAaIk7xDoXxplCkn0mBgZRYDrAkrPnxOSeE5OJ/8yZnylEs9CcZOS99aCO1K/PGESB6QBLzt4Tk3trIAqtSIbeWw/qRH37jEEUmA6w5Owdndw7ClEAIPuYRGF00kvOvrHJfWMQBQCyj0EUmA7sH5vaNzbp7B b2j82BVEAIPMYRIHpAEvOgbGpAxAFAFoAgygwHWDJOXBy6sBJiAKoE/IP2wBDOVyTxSQKJ6e85Bw8OXUQogDqxTT9DQtg6IZrshhEgekAS87B8amD4xAFUCfQqZQ0XBQOjU8dGp86OD51aHzKOTR 8dD4RYgCqA/oVEpSIAoXveQcHr94GKIA6gU6lZKGi8Lh8YuHJy4yNXAOT1w8PJG8KGA1Z6AEoqCk8aIwcdFLzpGJi0cSFQWs5gwMhOpUNueVmF3L/tRV0z7ccFFgOsBSwqLQgNWcXfLUW8JPllhaDniE3nWjrWtcypPnIJVPc9PnLNP/5IV9p2KDkHUhw4AsFouarqU2GOhC58veUQTSJQpHT108eiphUZD/Bjtau9Wc5aVywxUPY1k3 INFIYrYlfJOPp8nD9UqRSGsEkQokhyhRIHvM7oBGUoUhJxKFzqD2RYFpgMsJSkKOkUw6kLSqzkniP0IDIwhSpDlQi5fcitL8kAU P38hN/LJl8IyDmFWYDShZdNmDsYHMUHosATezVnebUh9XrNmiV3Q1iuZg29CC9ZS5rLo1lx2PMmLHJiKQpSDMErJru8/Wowkh1prZcoxLynIE/42VhV7lfmlCcLsguvFD930DlKhLSJwqdHT32aMlEIs5pzZa mu/ormHnr6fALMYW0TJYDCrMIr/9RtZ6XapRVNEGINOCegt3K18o1goSGUtgRDkpEwnYqYfgVKfxYVe7n7eimHrIL4TrC7ChqSxBSIAqfeinJG43JiUI5xGrOgjHxjK1aI9jlx0AYy9xICbcIr3kcmsSIViFwpqCMIbA15GAUduhBiUrYTsUQxicPP2Ll/UojNi7kDZ2jsHXReU/RjcZkH53W6YL RiPt1PST1WrOBG ioblprxCFMJb58EItwhtWFLx5gpevZC8KQgwWraH8SlMXYfnmsNh3KnlK79KBLVw KPfr9ti78K4XdI4SoeGiQB6d/tvh80OHzzfvas5kh3l1ZlcenCEtkxEYZhFe8 WD5qKHfGS3LYLvKcgx6FvD9JVkR3llEZ5QnYq/4BcGqjBWlZmVeyxdeBvedMDgSC4lbNjUtLGi8LfD573kbBw vXH4dBOv5qxYKpdOfk2iENZy1EV4hXMyn0UxxFRvTxIqorQsRq26/KqIpuPdga3uz0mio7VTtxuNLveotWEnvyFkVu6xdOHq/yyqu3ZQhmRTzYaLwsbdp5kUbBw nbwoeGWTvehKH1i4OQpxOlU9Uc4Fauou 6KQcbBwc1SaqFPV85QGUQCtCzqVEogCaF3QqZRAFEDrgk6lBKIAWpdp6UeBgAFRAC3KHKCn1o0PUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgNFgU D/ARrMAAEiWhomC90sMD0gDAGmgMaLgyQH/6LS3R1uMf8GBDTbLfHCrCMR8ZYONi2SemYy1fEmVUI2ZiEffFr8WS L2S3nHsAxOLTxmjUaKwrSEYeUlV3jBgQ3BBz7kKxui9SS UybSF5MwonhbhNKyfcUto2JL03nrwYQqa4diQSrl6pYQBQ0NEAWdIgTpQpm84MCGwANvtUKRnSmzF7JgW w1VxLo0GXF2yIMlhMTheqqkuVCLlco5Lk1sBIcosSaxjREQU/ziEJZfsFB5R0N0psR D3SyxekBczoLLYyx1e/soE7bRby9KKDv0aQhUaaKYivnJBXMeOWQBMXn1O7UFVcd1lEGtOrdbX1cvybHaSPnAvuPM9lVgZfbUoyN5HEKLk3cdBFaNWWVa 0UFlOZIG5JqJpRKEsv CAP2b0zQhksVN/TCrP0vSIk54hvbKBG0T0FEfXL9WOWFW/KitflyB3a86FqG3 V1xTmE7CisaUpwx8g3AG5QClAaYYk9QtGau81IvNwocR5k0cpqmPcChFUZAtJ/MmiyaiWUSBDCzFa4uE2wF0D3n5gg7LVzYoe5LyhENily4fxNN OeAdFiW9i7DxGBpTtxHY2oIRIfhqg6om9aW8rqwhMJ0LsU3oCJctK2shWqaHpgVokhuNZc0LDrgdprHKv3xBi90rG KKAvtaeskCF4T6HRYGFxHi0TWmpSiY96jPqMSreD6uvFAvwTdxCJ1EY1ktCjV5k0UT0TBRCPXeB8UoyOfFFxdwh1Oa4qpXUBVP4UIvkV/ZYJpzmi8fuGmz7iULAe w8Pf4eSUHUsUV8agbM1AUxFdVhHkZhEunCWIQXjsn8yYO30NOnPZJlqX9smXx0EieMkfDfrzEC0HQex90LzjISW9GkPf4nUJ5PMO9ssFwHhZmp7wPOiMVbit6 b09XMh0h58jp9IddcWlnqxpzEpo1eobpuvyfLwSD990QvDSlRuNyht3YrNoRUHVPgJUO3WWpVooLEuHJuM0 GfO/EwhXEnlCVl70KL9ITBSKbznATQ5TftAlL0oRHv5QrhS/B 8WuR0AjJL04oCAKA2QBQAAASIAgCAAFEAABAgCgAAAkQBAECAKAAACBAFAAABogAAIEAUAAAEiAIAgJA UcjsKsPWUST GAVnM4EVq/3nPPCURzZJnShkdpVhS1PC4gsJeA 5YnWgMbI2BHQhg6RNFMqZXWU4gijUaOnn6I0p5cBz4lkkZaJQzuoqw15dhDBULylJZOlnalFY0IRlVK9YbbAmr3HETT1Mi0eDpqLeolBU4X1bzvAqwyQMGrNg33BPQVhETK6z mxPNYQ0prRitVUVPKoFNYtHKw83aBSWSxkV6y8K8nqt1S/pumXm1bjkewryBbN82nccRx5y9VllWHkppBSd Es/664BLFesNlRBP1NQ1ki3ZjeoP2kXBfV35UyvMhxFFNjX4Zd 1mK3YrXWmuaegrlGIB00pSgo5qpZWmU4xOVD/KWf1fasVqw2VMHV/PUBotAMNKMoZH6VYS4Meo1PoLP36Es/S445e8YVq4OsKX6nAFFoBppRFEBDwB8VWwWIArAg2jrXoDmBKAAACBAFAAABogAAIEAUAAAEiAIAgNBkolDjX3wD0BKYx3xgBj5nKkRhDgAgBqOjoxkUBUsLAGSe0ZBAFADIOGyE2z/ CFEAIOMEjnCe1hOFI3099/n09B2xdBSLI309vKsjfT11cgyA60IUDEG4bqQBGX8MMyXyjEAUQH2BKKiDONLX0zvUOFHo6evrva93KCGDrusO9UJYgCUQBTmIoV7vPC0PSP CovLFUK9/fdE7VP26p 8IX5ZtH nr6ent7SEZFRclfua I1wM1BHbz6zd19M31NfD2VIZP9LXU7cLINDUQBRIEEO9lRFXgdxT6B3iRUKpF6rBTL66T/pOZ8d1h3rvU89WBGv8Rk/fEZPxI309pH4AyAgjXPlTJf7bTIvCUK84XoRBRe873uePSW6HWRS8r2Q7CqdDvbpSSke WOiNK6sJAIc8wuUfL3oZsi4K5MrBdV2lKAgDaqj3PnpathUF/cAUzvS9vT09fUdsHPmioDOOmQIIRjnClYrgtoIouC69 FZNv/37f/f1DlXn K5b1Qf PK/9SrbjEie 06Heysleb03cUBvHPQVgiW6Ey9/f2boAABLxSURBVIrgtooouK5r uuDd79Puqnnj17/VmB1fw85t6vsEN/0ZwryZYpRFFTG8dcHYI1hhOuGT0uIAgAtC/76AFEAgABRgCgAQIAoQBQAIIyOjip/m6ADogBAxsEiK26xWAy7qgQAQCBTomCzkgQAIJCwQ0 Xs/GiAACoNRAFAAABogAAIEAUAAAEiAIAgABRAAAQUi0KAICGkFJRqOffbAEAAmkUBQBAyoEoAAAIEAUAAAGiAAAgQBQAAISUiUK5kHMq5EvJmIzupVzI5Qrl2C4cJ7KVhIJxS3mhpuVCTq56LBcgO6RKFEp5b/woe62bSMeVvOhssv3RPPLxJzLY4hkRSquNQRSA67rpEgWbThm/48oWzKIQ2YsvaqV8/HlPzIqT4hpbEAXgum66RMEtF3LSVNufh7OztjQf57uyf27P53O66wPBi2 zwE2yS3knl8/7M4VyIccy8Eb5awRZaKSZQinv5a585xmolCaVtXHBGVNGSHJzNpXxyDMjb1sKTIwcZIh6i4Ly15fc90Jnk7qy Tzv5eH7ruIkTb2Qrs9yl/LeZYVvk9OCXKHM21ZGZbinUMlfnUFULMnjlnPBXfR4DnxlYaXFCFU lV8KNRVFQQ5MiLxCPX6pC2KQ0l80FqvvvQr46SUbA2RoOY6TK5TsRIHfY5i6e16q Sudnf1nHirKMyoflXz5IJ72K5 laYKqsoa7AjbxuJoRzsdjqKkQWJlGXqU P9QF0Ui7KFhkrJ6rhSFtOVMwDw/Zi5enlHfypVKem0EkIArsa3qDk8tfyjtOYGXjiwLb6wuNFI9JFNTCWolc17ogTTSlKIgnV3mKrv5LAXcbz59fkEIBXojNUl64djFNqs2XD9w9BSdfUscpeBLiptcIgZcPQVJYLuRyOXFWJLWDtF95FOTrO5BumlIUXHLrix 4/JU5 yj90b2SJVcdwDnDfTDJC7Hpn0ADRMHyLqBvWr7PQO9tyJXlc RUusPltZkfUWkR46mWEttTFZgUOUg7zSoKyRDr7BXpz4dJ/M0RgJoCUYgkCtylg21u9TwBgNTR2qIAAJCAKAAACBAFAAABogAAIEAUAAAEiAIAgABRAAAQmlwUkvvtrPT7x3quQVQu5MTnoGqw0JP3kAghEUe8Vf/Z6khmFT9EDXTs5y4XcrF/C L/rKSmPypJ7 /YsiUKpmf zCiOkI3tZESh8lhVyIWeQjqpCI yVvaOVDnpT6JLecfJF0Ka9Qk5VOhDGhWNiHNE HOB9BgJ9Rv7kY60ykK2RCHZPGSn4cmhmKLATRMsRmBUp9xD2aSssWNahaTRiWgzhbBVKxdyuUIh7z8RUlnwxt6C2b2ueZKdIaaMbImC9KBOrlBSLMHk8vNd9lSicirNWa9uJr8GUSnP Qiz0JO9C5fr3OaZgvDgVmXIefUtKxrToKf V36z0dmK8HNxeiDIMWKl2DJZ3GEqV541rz4Dxz3xbSgutRvX5KpHZf2yzBrXDoqm0y5vJR ddM4VMikKdLUf9clN/zSxyrz2BKkVBVlQlGsQCecK2m1Ih5MWerJ1QdtJvKfATx 4Yl69HGmPzXSGZOajKeX9JWHEJaLkQKUFozT5veqrnErFFVqvr4t3I4aGJfYMpTvheXnF0UlmwpE0mRSFsrhOkaEf6/q6aJA/nYvn0uhrEPnTBIrlQk82LoQak5pWu6ehFoENFSgKyiL8CVRpzfIY QcoX5JXwVIWV7QbH5hupsDftuD22Ded0C31jddwMikKFfx1iiKLAvu6VmsQlfWXlHYLPVkvc6QRBdVycrpm0TaUqu2CRYEsDKMwFk4U3HIhl8vlrARO327aewpma7ai4Js0LpHZeLIoCsJEUV6s0frywa32NuGEXdnkJ64R1iCi0wTSV20WerJx4aG7pyBej gvFvQj03dbjZP 9YGvGX/5oDkz plcYzkoS45lYpL7cYbVP71QS4hipcxWmW3rJ5kcE hBqJAZoI577zBTQ1Vf/mmOUyKTbs8ccgNEn /7RpEiv4QbqGnYBeCbeVfH8qFXHUMC9VTn 7UPyPgy6lO17objawgncCTiXrQMTJMA03FpXWr1IeBnxUKK3RV28HGndRJOLsp1IRmF4UWIu5JJVwHTOcprFHUaJaf1kaGKDQD4RZ6Mlgx90GsEKWhJqKQVkmAKAAABCAKAAACRAEAQGgyUQj5RjwAgBrDsDd/K RMhSjMAQDEY3R0NGuiYP2mTACAAogCAIAAUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgQBQAAASIAgCAAFEAABAgCgAAAkQBAECAKAAACBAFAAABogAAIEAUAAAEiAIAgABRAAAQIAoAAAJEAQBAgCgAAAgQBQAAAaIAACBAFAAABIgCAIAAUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgQBQAAASIAgCAAFEAABAgCgAAAkQBAECAKAAACBAFAAABogAAIEAUAAAEiAIAgABRAAAQIAoAAAJEAQBAgCgAAAgQBQAAAaIAACBAFAAABIgCAIAAUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgQBQAAASIAgCAAFEAABAgCgAAAkQBAECAKAAACBAFAAABogAAIEAUAAAEiAIAgABRAAAQIAoAAAJEAQBAgCgAAAgQBQAAAaIAACBAFAAABIgCAIAAUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgQBQAAASIAgCAAFEAABAgCgAAAkQBAECAKAAACBAFAAABogAAIEAUAAAEiAIAgABRAAAQIAoAAAJEAQBAgCgAAAgQBQAAAaIAACBAFAAABIgCAIAAUQAAECAKAAACRAEAQIAoAAAIEAUAAAGiAAAgQBQAAASIAgCAAFEAABAgCgAAAkQBAECAKAAACBAFAAABogAAIEAUAAAEiAIAgABRAAAQIAoAAAJEAQBAgCgAAAgQBQAAAaIAACBAFAAABIgCAIAAUQAAECAKAABC1kRhFAAQm yIQuO0FYCsEWro6XI2XhQAALUGogAAIEAUAAAEiAIAgABRAAAQmkwU6n1/tpZ4rdnoQJKEVarRUSRJhg9TqKGny5kKUWjcX3aThG/N7FUqezXKaqXsh54uZ1pEwdJCmpF7W2PjSQRBFBodTgJk zAZMkAUGkC2e1v2auRmtFK6DBCFBpDt3pa9GrkZrZQuA0ShAWS7t2WvRm5GK6XLkBFRKBaLho/2yAV1piK7cJPrbUWOwJzRXIQKxlIUihRlBlcTc30OkGch7GGKUzXBgo2vwDzKUi0kCnwbRf6Zg1xQZyrOLykSFAXv70zmLmKoRTTXSlP2oiD8kUwXrVyv hwgz0IEUYhcNbd6OIQDalC9CBVsOVHwisQcscJ2ykWB/2iZM3B/tGBCiYJlBqUKCNtpEwXLDIECx7aTPXatJQqCuPJNz88jDBvKsgY7gtjzX5lngLUTBXO0yv32YQcGE1MUihxe28oh1eEACTWyqVTiVRPKulKP1R1T 0qFqoK9qdSJgiCuRWk psxjGFqCcgt25MyyR2W0NRUFXa11 y3DDgwmwj0FficfgPBvnQ QUCObSiVSNVc1wvljxPfYsNWRK6XLkClRcPUiyos032 Uvvhv5RORfFz5GGSPymhrLQq6aJX7lUUiBBPtnoJcF10L8xbcWh4goUY2lUqqaq7qngKvBbKRUAeu2IKi4FY7B998PPJRkX0p 5OrF3u5lNwzBPu1FgVDreX9yiIRgolz RBWFGp6gIQa2VQqqarJpQJFIdSBgyiI /kNL4PLnW14gy49C5mPq3CCEjzKxhMXBaFSwn5dbOaGChtM3UTBrfEBEmpkU6lEqlaUrhrk4l7Fw1ZHrpR9FUKZSqMouKp2NIwZXZ TD5iH3NtcehQFj7LxWvxOQWgBuQPpWkPXUGGDifk7BUMLK43U7gAJNbKpVFJVU8ZWpJcS8sTB/sAVW0cUXKk5 I/yzEq3bTDI22FfeRl0e3SWI/Q2HUJIyq E6hhawxy2GXtREMJWHim5PZVGDGblesl7zDWNdpjiV00Z27R0PgtbHblSugyWHaAJRKGJSFAU0kMoUWgKUnWY4kziBDsQhTSSqt6WFBCFWhN5EscDUUgpaettiQBRaAogCikl270tezVyM1opXQaIQgPIdm/LXo3cjFZKl6HJRKGYFfje1uhYEsMThUYHkhgZPkyhhp4uZ NFYU62yGqlGh1CwmT1MIUaerqcSlN47wMAmQKiAAAgNJkoTAOKeR4IQASaTxSM77loLYRD0lh5SiFzuHuEgCdT9xRCWcg8sig0WqZSRFH6ayJgZO2vDxAFHqUoNDCeVCGLQmPjSQ8QhSwDUTAAUdABUcgyEAUDEAUdLSQKxSTe/FELmzyezfiWXYiCEYiCjtYSBcuaWHosJvTsunDj16XrIMU0HlkUeJ2qGzWVSNmXThQM7nRfyZHHCczeaRxHhgAgCrbIopDIuFUaaawoeHo3HXU1d53NwDy1k0jZl0EUDO6UbaKMPHJgQvGadhKl2ZYWBVnaDXtkUfDOY0VuhTzdR U5RNkD P1xTj5xRIGPKpGeZ9OT6tn7I4uCMkOyEQrdz9UcAoiCVWShREF3PuT3CHnkmcI0t4S2bFD ShjevOLwZr1/lRHaN1EioiBH633kv1LmEcoG5qmdRMq AkVBKfrCHkPkiZwqhG1lV ELKnPqHAW2jC5DlkVBbnp lE5Ly2MrLx/kDZc7YIY83kd zimIghCPZeN4xhO/pyBLnlBfV6NiRUkf6yyRcgVtRMFzylfZq0tg5JFPFbpeJ9uxOQo6R4Eto8vQQqIgtGbdREGOSuh8vGrYE0cUXNXwkxVK7nM6FTO0kpCnRhIpYCkKukiUR02OXFnfwF4hN6yy/Q2ioDtSvDWbltFlaC1RCNwjF6 1KHj7LVuGNxX/T5JCr IVU1dNpYrZi4LsPRGJlOtlKQq6SJStZG9El0eZ01W1v7nTyg1l2YVaSxR4hJ0ut2y LLHCHiEA4ajwBmOKgtKgl03YUFY5zl8fzNWUO6tyv72dwNaIKZFyHdMsCi5tWJtgvC4qN5RNb1G2jC5DRkTBlR6GE3Yqs n2ePuFDdmgYUP50dujizDQoEdkUXBVcsnvNA9suaD3lTlPTSVSrmBkUZAdmWUi7KnCYJNvf6FZBINCC9u3W2uJQqsRRxRclVy6Gn3U5VHaNOepnUQKGERBZ02OxCbyOGErbfKmhGaR98gxBAYAUcgyMUUh25hFoZWBKGQZiIIBiIIOiEKWgSgYgCjogChkGYiCAYiCjgyKQhFwQBR0FCEKGooZEwXrV120EHzzNlSgUsccThQaHUu6mJMlUQAGGixOqQQto8PQkSAKAAACRAEAQIAoAAAITSYKNjdRICUAxKH5RMF8 2R0dBSiAEAcmlIUDKV0olCs/bLFMV3wk53EXRRVzy9GKG7IEM1yshSlRxtrZzzwW13 xjaRDdkRBdbWBlHQ1TOpg6RzYWO/yC2wMa1fVCvyxVGx iiu5yVUrQP9FrllP2ohapYIqpT4taTBmuzL0B9SPpnNiCh4vSGaKCRykOJ0AjlPsv3JEwXhSdtQxS0z1KGpDWFYRlIj78I2RKGuoiAcAHtRKKoW8NXNrr1t5fRYzuy5sLRvrmwcF4IRly7 YfZi71cZv7Cta08 NmEjMBhlNT3XyrCF1uBtBrqTY47ZCMJ8KrDubn3R9RNlznSJgnx0XTtRKKoW8FXOrvmvhOmxLrNXUxv7gZVVmjLHyVdNNq7sdsqobPzyRnjL/FA0tKdwXHRVk/coq8kbURqX88gtFhiz5UEUDqiyMeWQdHWvsy40tyjIXdxGFFi7u6o xKPsXnIpsx2z/cDKKl0EBuO1tst1LM s0KHl7qurQmD8smVze/JdX dCZ0Q LsJRlg 67mAJIQXGLDcXH4Dc5rrGlEOSm1c4mvVBqKM5Z4pEwdXM4ixFgd8pfMVjU0rYU6R6b7YfWNkIouBKs2X7BuGLy1WwjN PXX/ykWURuTgha iiYJNzHJ76g6HuTHlUnLzFus7TXD1fUaZM12i4KraK74o8JajiYK9fV1lBe hXAgWXHrKCmwQe7 6 O0tu9J0xqZIHFHwdppFQekusBHketk0phyScPh0jmpHc4uCTARRcGnrM1xpWV7hK8vMZvtChBFcuKqxpNxvCMDgV9mD5fiVwessC40vb1s2git1EsNHz4JcI6VwKNvc3AjKGAIb02zZ4Kh2yFUw5EyFKIwGoauPt5/PIO8UJm98hxC 0mXm9wfaFyKM4EJZKeV QwAGv2xnYPzK4HWWlTHbBGMuaP4o1EXZpGZ3NgdRjsENakyzZYOjGtFkojBth6ULe ybCYBmp8lEoYGkKhgAagdEAQBAgCgAAAgQBQAAAaIAACCkWhQAAA0hpaJg ddHAEAtSKMoAABSDkQBAECAKAAACBAFAADBUhT P25NFkPX8uDfAAAAAElFTkSuQmCC[/IMG]

    Hope this helps.
Sign In or Register to comment.